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Framework Goals

Build a repeatable and practical framework for
vulnerability analysis
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Framework Goals

repeatable

— Theoretical foundation
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Framework Goals

practical

— Practical levels of abstraction
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Talk Outline
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Security Policy

Section 1
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Terminology

* Policy Event
— E = (subject, abject, action, boolean condition )

* Global Policy Event Space
— Universe of policy events E=S X 0O X A X B

* Policy Oracle

— Oracle function P( E )={ yes, no, unknown }
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Policy Hierarchy

* Ideal Policy Oracle
— Which policy events should be authorized (ideally)

P.4( Xander, control room, enter, true ) = yes
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Policy Hierarchy

* Feasible Policy Oracle
— Which policy events are authorized (realistically)

Pq(bid:14, room:21, enter, true ) = yes
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Policy Hierarchy

* Configured Policy Oracle

— Which policy events are allowed (by configuration)

P . (bid:14, room:21, enter, true ) = no
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Policy Hierarchy

* Instantiated Policy Oracle
— Which policy events are possible (by implementation)

P.,(bid:14, room:21, enter, true ) = yes
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Policy Hierarchy
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* Policy violations occur between oracles
— P ( bid:14, room:21, enter, true ) = yes

— P_,(bid:14, room:21, enter, true ) = no
— P;,( bid:14, room:21, enter, true ) = yes
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Vulnerability Hierarchy

Section 2
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Terminology Overview
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Vulnerability Hierarchy

* Avulnerability is the set of conditions that enable an
unequivocal policy violation.
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Inherent Vulnerabilities

Ideal

Policy Oracle

Inherent
Vulnerability

_ * Result of intentional
Feasible .
Policy Oracle compromises

* Indicates where functionality,
configuration, manageability, or
usability may be improved
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Configuration Vulnerabilities

* Indicates that the policy as

Feasible configured is incorrect
Policy Oracle . .
Configuration * (Caused by difficult to configure
Vulnerability . . .
Configured or maintain security
Policy Oracle mechanisms, or poorly

articulated policies

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010



19

Implementation Vulnerabilities

* Captures the traditional notion
of a vulnerability

 Indicates that the mechanism’s

Configured implementation does not
Policy Oracle

Implementation properly enforce the policy

Vulnerability
Instantiated

Policy Oracle
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Vulnerability Model

Section 3
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Terminology Overview
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Implementation

Vulnerability

Policy
Violations

Vulnerability
Model
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Terminology

* Security Policy
— Traditionally defined as a partition of states
— Instead define as a language of configurations

Example: State g, is authorized if w is on the tape.

* Policy as a partition:
— Must design TM and split g; into two states
* Policy as a configuration:

—{uqv:uov=w}
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Terminology

* Policy Violation

— A configuration that is either valid but unauthorized, or
authorized but invalid

* Precondition

— A language of configurations describing trace prior to the
policy violation

* Implementation Vulnerability
— A policy violation and its associated preconditions
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Vulnerability Classification

Section 4
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Terminology Overview

Preconditions Characteristics

Policy

Violations Symptoms

Vulnerability
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Perfect Knowledge Assumption

 Why is our formal model impractical?
— Do not have the formal specification
— Do not have access to computation trace
— Do not have an explicit set of systems
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Perfect Knowledge Assumption

* End result:
— Defining a precondition is impractical
— Defining a policy violation is impractical
— Defining an implementation vulnerability is impractical
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Vulnerability Abstraction

* Characteristic
— A set of similar known preconditions
— Example: X, = { t: t contains the null character \0 }

* Symptom
— A set of similar known policy violations

— Example: Y, . ={u:VALID(M) \ L(P) }
i.e. u is a valid configuration, but not authorized by policy
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Vulnerability Abstraction
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* Implementation Vulnerability: V= (U, T)
— Tis the set of policy violations

— Uis the set of associated preconditions
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Vulnerability Abstraction
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* Vulnerability Abstraction (IVAB): Z=( X, Y)

— X is the basic characteristic set for U

— Yis the basic symptom set for T
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Vulnerability Abstraction

* Equivalence Class (IVEC): Z=(X,Y)
— The set of equivalent IVABs
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Vulnerability Classification

e Master Classification Tree
— Characteristic Classification Tree
— Symptom Classification Tree

* Vulnerability Classification Tree
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Vulnerability Analysis

Section 5
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Terminology Overview
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Analysis Goals

39

 Shift focus from if a system is secure to
when a system is secure

* Locate and mitigate implementation
vulnerability (equivalence classes) via
characteristic-based analysis
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Analysis Overview
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* Phase 1: Preparation
— Define global policy event space

— Approximate configured oracle

* Phase 2: Analysis

— Approximate instantiated oracle

— Identify confirmed IVECs and characteristics

* Phase 3: Mitigation

— Identify target characteristics

— Disable target characteristics
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Analysis Overview

phase 1: preparation

: determine approximate I phase 2:

! analysis scope configured oracle b analysis l_,,"

i refine scope ] IVECs
'''''''''''''''''''''''''''''''''''' (Confirmed)

phase 3: mitigation

vulnerability mitigate target identify target

mitigation characteristics characteristics

end

@

if unmitigated 1VECs < threshold, continue loop

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010



Phase 2 Analysis
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* Characteristic Analysis
— Develops set of suspected characteristics

* Environment Analysis
— Determines if suspected characteristics exist

* Vulnerability Analysis
— Develops set of suspected IVECs

* Instantiated Oracle Analysis
— Determines if suspected IVECs exist
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Phase 2 Overview
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Phase 3 Mitigation
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 Identify target characteristics
— Frequent, i.e. associated with most IVECS

— Dangerous, i.e. associated with worst symptoms

* Disable target characteristics
— Some may be impossible or infeasible to fully disable

* Mitigate vulnerabilities

— Compare confirmed IVECs with disabled characteristics
— Update set of confirmed IVECs
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Phase 3 Overview

phase 3: mitigation

vulnerability mitigate target identify target
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end

@

if unmitigated 1VECs < threshold, continue loop
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Conclusion
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Terminology Recap
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Framework Recap
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Contributions

* Policy-Based Vulnerability Hierarchy

— Can incorporate both security procedures
and security mechanisms

— Captures high-level and low-level vulnerabilities

* Formal Implementation Vulnerability Model

— Policy as a language of configurations,
instead of a partition of states

— Theoretical foundation for classification scheme
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Contributions
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* Characteristic-Based Vulnerability Classification

— Makes “perfect knowledge assumption” explicit
— Provides reversible layers of abstraction

* Policy-Based Vulnerability Analysis Framework
— Capable of repeatable vulnerability analysis results
— Practical for stable, small-scale environments
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Future Work

* Theoretical Results
— Decidability of different security problems

* Vulnerability Database
— Characteristic-based classification
— Classification versus clustering

* Extended Case Study

— Hypothetical electronic voting environment
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Extended Case Study

* Four Analysis Teams
— Environment: Develops hypothetical environment
— Alpha: Performs analysis using framework
— Beta: Performs analysis using framework
— Control: Performs ad-hoc analysis

 Compare Results
— Number of vulnerabilities found
— Consistency of results across teams
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Questions?
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Insider Threat Case Study

Supplemental Slides
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Insider Threat Case Study

* Demonstrates vulnerability analysis using the Policy-
Based Vulnerability Hierarchy

 Insider threat exists whenever:

— Someone has more privileges at a lower policy level than at a
higher policy level

— The “insiderness” captures number of extra privileges

* Focus on identifying potential for misuse of privileges,
not potential for abuse of any particular user
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Insider Threat Case Study

* Two Primary Phases:

— Inherent vulnerability analysis,
such that P, (E)=yesand P, (E)=no

— Absolute vulnerability analysis,
such that P, (E)=yesand P4 (E ) =no

 See dissertation for details

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010



Electronic Voting Case Study

Supplemental Slides
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Electronic Voting Case Study

* Demonstrates the Policy-Based Vulnerability Analysis
Framework

* Target Environment:
— Electronic voting setup for a single precinct
— Ideal due to precise set of systems and procedures

e See dissertation for details
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Buffer Overtlow Characteristics

Supplemental Slides
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