A Policy-Based
Vulnerability Analysis Framework

Sophie J. Engle
sjengle@ucdavis.edu

EXIT SEMINAR DEPARTMENT OF COMPUTER SCIENCE , UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Framework Goals

Build a repeatable and practical framework for
vulnerability analysis

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Framework Goals

repeatable

— Theoretical foundation

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Framework Goals

practical

— Practical levels of abstraction

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Terminology Overview

Ideal
Policy Oracle

Inherent

Vulnerability
Feasible
Policy Oracle
Configuration
Vulnerability
Co.nflgured Preconditions Characteristics
Policy Oracle
Implementation
Vulnerability [VAB /IVEC
Instantiated Policy Symbtoms
Policy Oracle Violations ymp
Policy Vulnerability Vulnerability Vulnerability Vulnerability
Hierarchy Hierarchy Model Classification Analysis

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Talk Outline

* Section 1: Security Policy

e Section 2: Vulneral
e Section 3: Vulneral
e Section 4: Vulneral
e Section 5: Vulneral

SOPHIE ENGLE

D1

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

ol

nility Model

ity Hierarchy

lity Classification

o)l

ity Analysis

APRIL 13, 2010

Security Policy

Section 1

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Terminology

* Policy Event
— E = (subject, abject, action, boolean condition)

* Global Policy Event Space
— Universe of policy events E=S X 0O X A X B

* Policy Oracle

— Oracle function P(E)={ yes, no, unknown }

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Policy Hierarchy

* Ideal Policy Oracle
— Which policy events should be authorized (ideally)

P.4(Xander, control room, enter, true) = yes

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

10

Policy Hierarchy

* Feasible Policy Oracle
— Which policy events are authorized (realistically)

Pq(bid:14, room:21, enter, true) = yes

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

11

Policy Hierarchy

* Configured Policy Oracle

— Which policy events are allowed (by configuration)

P . (bid:14, room:21, enter, true) = no

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

12

Policy Hierarchy

* Instantiated Policy Oracle
— Which policy events are possible (by implementation)

P.,(bid:14, room:21, enter, true) = yes

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Policy Hierarchy

13

* Policy violations occur between oracles
— P (bid:14, room:21, enter, true) = yes

— P_,(bid:14, room:21, enter, true) = no
— P;,(bid:14, room:21, enter, true) = yes

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

Vulnerability Hierarchy

Section 2

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

15

Terminology Overview

Ideal
Policy Oracle

Inherent

Vulnerability
Feasible

Configuration

Vulnerability
Configured

Implementation

Vulnerability
Instantiated

Vulnerability

Hierarchy

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

16

Vulnerability Hierarchy

* Avulnerability is the set of conditions that enable an
unequivocal policy violation.

Ideal

Policy Oracle
Inherent

Vulnerability
Feasible

Policy Oracle

Configuration

Vulnerability
Configured

Policy Oracle
Implementation

Vulnerability

Instantiated
Policy Oracle

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

17

Inherent Vulnerabilities

Ideal

Policy Oracle

Inherent
Vulnerability

_ * Result of intentional
Feasible .
Policy Oracle compromises

* Indicates where functionality,
configuration, manageability, or
usability may be improved

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

18

Configuration Vulnerabilities

* Indicates that the policy as

Feasible configured is incorrect
Policy Oracle . .
Configuration * (Caused by difficult to configure
Vulnerability . . .
Configured or maintain security
Policy Oracle mechanisms, or poorly

articulated policies

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

19

Implementation Vulnerabilities

* Captures the traditional notion
of a vulnerability

 Indicates that the mechanism’s

Configured implementation does not
Policy Oracle

Implementation properly enforce the policy

Vulnerability
Instantiated

Policy Oracle

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Vulnerability Model

Section 3

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

21

Terminology Overview

Preconditions

Implementation

Vulnerability

Policy
Violations

Vulnerability
Model

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

22

Terminology

* Security Policy
— Traditionally defined as a partition of states
— Instead define as a language of configurations

Example: State g, is authorized if w is on the tape.

* Policy as a partition:
— Must design TM and split g; into two states
* Policy as a configuration:

—{uqv:uov=w}

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

23

Terminology

* Policy Violation

— A configuration that is either valid but unauthorized, or
authorized but invalid

* Precondition

— A language of configurations describing trace prior to the
policy violation

* Implementation Vulnerability
— A policy violation and its associated preconditions

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Vulnerability Classification

Section 4

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

25

Terminology Overview

Preconditions Characteristics

Policy

Violations Symptoms

Vulnerability
Classification

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

26

Perfect Knowledge Assumption

 Why is our formal model impractical?
— Do not have the formal specification
— Do not have access to computation trace
— Do not have an explicit set of systems

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

27

Perfect Knowledge Assumption

* End result:
— Defining a precondition is impractical
— Defining a policy violation is impractical
— Defining an implementation vulnerability is impractical

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

28

Vulnerability Abstraction

* Characteristic
— A set of similar known preconditions
— Example: X, = { t: t contains the null character \0 }

* Symptom
— A set of similar known policy violations

— Example: Y, . ={u:VALID(M) \ L(P) }
i.e. u is a valid configuration, but not authorized by policy

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Vulnerability Abstraction

29

* Implementation Vulnerability: V= (U, T)
— Tis the set of policy violations

— Uis the set of associated preconditions

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

Vulnerability Abstraction

30

* Vulnerability Abstraction (IVAB): Z=(X, Y)

— X is the basic characteristic set for U

— Yis the basic symptom set for T

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

31

Vulnerability Abstraction

* Equivalence Class (IVEC): Z=(X,Y)
— The set of equivalent IVABs

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

32

Vulnerability Classification

e Master Classification Tree
— Characteristic Classification Tree
— Symptom Classification Tree

* Vulnerability Classification Tree

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

X:BUFFER w=SEI)™= . 1NpyT D X : OVERFLOW w=m D x:buff
X:CONTAINS X :addr

X:inst

X:MODIFY X:DIRECT

X:INDIRECT

X:CONTROL X:EXECUTE

Buffer Overflow
Characteristic Tree

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

X:buff

X:addr

X:inst

x:rval

X:jmps

X.exes

Direct Executable
Buffer Overflow

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

)
J

X:BUFFER

[)

X:INPUT

X:MODIFY

X:CONTROL

Direct Executable
Buffer Overflow

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

J

X:OVERFLOW

X:DIRECT

X:EXECUTE

X:buff

J

X:inst

X:CONTAINS X:addr

APRIL 13, 2010

)
J

X:BUFFER

)
J

X:INPUT

X:MODIFY

X:CONTROL

Direct Executable
Buffer Overflow

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

X:OVERFLOW

X:DIRECT

X:EXECUTE

X:buff

J

X:inst

X:CONTAINS X:addr

APRIL 13, 2010

Vulnerability Analysis

Section 5

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Terminology Overview

38

SOPHIE ENGLE

Characteristics

IVAB / IVEC

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

Vulnerability
Analysis

APRIL 13, 2010

Analysis Goals

39

 Shift focus from if a system is secure to
when a system is secure

* Locate and mitigate implementation
vulnerability (equivalence classes) via
characteristic-based analysis

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

Analysis Overview

40

* Phase 1: Preparation
— Define global policy event space

— Approximate configured oracle

* Phase 2: Analysis

— Approximate instantiated oracle

— Identify confirmed IVECs and characteristics

* Phase 3: Mitigation

— Identify target characteristics

— Disable target characteristics

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

41

Analysis Overview

phase 1: preparation

: determine approximate I phase 2:

! analysis scope configured oracle b analysis l_,,"

i refine scope] IVECs
'''''''''''''''''''''''''''''''''''' (Confirmed)

phase 3: mitigation

vulnerability mitigate target identify target

mitigation characteristics characteristics

end

@

if unmitigated 1VECs < threshold, continue loop

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Phase 2 Analysis

42

* Characteristic Analysis
— Develops set of suspected characteristics

* Environment Analysis
— Determines if suspected characteristics exist

* Vulnerability Analysis
— Develops set of suspected IVECs

* Instantiated Oracle Analysis
— Determines if suspected IVECs exist

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

43

Phase 2 Overview

confirmed
IVECs
scope instantiated
IVECs oracle analysis
step 1
suspected
IVECs

 external

S == ,
%ﬁﬂﬁf . expertise
& o (\ ,' =
x'//_/__/'
characteristic
analysis
suspected
characteristics
step 3
environment
analysis
confirmed
characteristics

vulnerability

SOPHIE ENGLE

DEPARTMENT OF COMPUTER

analysis

step 4

SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Phase 3 Mitigation

44

 Identify target characteristics
— Frequent, i.e. associated with most IVECS

— Dangerous, i.e. associated with worst symptoms

* Disable target characteristics
— Some may be impossible or infeasible to fully disable

* Mitigate vulnerabilities

— Compare confirmed IVECs with disabled characteristics
— Update set of confirmed IVECs

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

45

Phase 3 Overview

phase 3: mitigation

vulnerability mitigate target identify target

mitigation characteristics characteristics

end

@

if unmitigated 1VECs < threshold, continue loop

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Conclusion

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

47

Terminology Recap

Ideal
Policy Oracle

Inherent

Vulnerability
Feasible
Policy Oracle
Configuration
Vulnerability
Co.nflgured Preconditions Characteristics
Policy Oracle
Implementation
Vulnerability [VAB /IVEC
Instantiated Policy Symbtoms
Policy Oracle Violations ymp
Policy Vulnerability Vulnerability Vulnerability Vulnerability
Hierarchy Hierarchy Model Classification Analysis

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Framework Recap

48

end

phase 1: preparation

E determine approximate I phase 2:

! analysis scope configured oracle [analysis) "

i refine scope] IVECs
'''''''''''''''''''''''''''''''''''' (Confirmed)

phase 3: mitigation

if unmitigated 1VECs < threshold, continue loop

vulnerability mitigate target identify target

mitigation characteristics characteristics

@

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

49

Contributions

* Policy-Based Vulnerability Hierarchy

— Can incorporate both security procedures
and security mechanisms

— Captures high-level and low-level vulnerabilities

* Formal Implementation Vulnerability Model

— Policy as a language of configurations,
instead of a partition of states

— Theoretical foundation for classification scheme

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Contributions

50

* Characteristic-Based Vulnerability Classification

— Makes “perfect knowledge assumption” explicit
— Provides reversible layers of abstraction

* Policy-Based Vulnerability Analysis Framework
— Capable of repeatable vulnerability analysis results
— Practical for stable, small-scale environments

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

51

Future Work

* Theoretical Results
— Decidability of different security problems

* Vulnerability Database
— Characteristic-based classification
— Classification versus clustering

* Extended Case Study

— Hypothetical electronic voting environment

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

52

Extended Case Study

* Four Analysis Teams
— Environment: Develops hypothetical environment
— Alpha: Performs analysis using framework
— Beta: Performs analysis using framework
— Control: Performs ad-hoc analysis

 Compare Results
— Number of vulnerabilities found
— Consistency of results across teams

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Questions?

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

54

General Information

e Dissertation:

— Sophie Engle, A Policy-Based Vulnerability Analysis
Framework, Ph.D. Dissertation, Technical Report CSE-2010-

06, Department of Computer Science, University of
California, Davis, 2010.

 Committee:
— Professor Matt Bishop (Chair)
— Professor S. Felix Wu
— Professor Karl Levitt
— Professor Sean Peisert

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

55

Selected References

e Vulnerability Analysis: An Extended Abstract

— Matt Bishop. In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID), September 1999, pages 125-136.

 We Have Met the Enemy and He is Us

— Matt Bishop, Sophie Engle, Sean Peisert, Sean Whalen, and Carrie Gates. In Proceedings of
the 2008 New Security Paradigms Workshop (NSPW), September 2008, pages 1-12.

* A Taxonomy of Buffer Overflow Preconditions

— Matt Bishop, Damien Howard, Sophie Engle, and Sean Whalen. Technical Report CSE-2010-
01, Department of Computer Science, University of California, Davis, 2010.

* The Unifying Policy Hierarchy Model

— Adam Carlson. Master’s Thesis, Department of Computer Science, University of California,
Davis, June 2006.

e Protocol Vulnerability Analysis

— Sean Whalen, Sophie Engle, and Matt Bishop. Technical Report CSE-2005-04, Department of
Computer Science, University of California, Davis, 2005.

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Contact Information

56

SOPHIE ENGLE

Sophie Engle
sjengle@ucdavis.edu

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

APRIL 13, 2010

Insider Threat Case Study

Supplemental Slides

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Insider Threat Case Study

* Demonstrates vulnerability analysis using the Policy-
Based Vulnerability Hierarchy

 Insider threat exists whenever:

— Someone has more privileges at a lower policy level than at a
higher policy level

— The “insiderness” captures number of extra privileges

* Focus on identifying potential for misuse of privileges,
not potential for abuse of any particular user

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

59

Insider Threat Case Study

* Two Primary Phases:

— Inherent vulnerability analysis,
such that P, (E)=yesand P, (E)=no

— Absolute vulnerability analysis,
such that P, (E)=yesand P4 (E) =no

 See dissertation for details

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Electronic Voting Case Study

Supplemental Slides

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Electronic Voting Case Study

* Demonstrates the Policy-Based Vulnerability Analysis
Framework

* Target Environment:
— Electronic voting setup for a single precinct
— Ideal due to precise set of systems and procedures

e See dissertation for details

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

Buffer Overtlow Characteristics

Supplemental Slides

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

X:BUFFER w=SEI)™= . 1NpyT D X : OVERFLOW w=m D x:buff
X:CONTAINS X :addr

X:inst

X:MODIFY X:DIRECT

X:INDIRECT

X:CONTROL X:EXECUTE

Buffer Overflow
Characteristic Tree

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

)
J

X:BUFFER

[)

X:INPUT

X:MODIFY

X:CONTROL

Direct Executable
Buffer Overflow IVEC

SOPHIE ENGLE

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS

J

X:OVERFLOW

X:DIRECT

X:EXECUTE

X:buff

J

X:inst

X:CONTAINS X:addr

APRIL 13, 2010

X:BUFFER w=SEI)™= . 1NpyT D X : OVERFLOW w=m D x:buff

X:CONTAINS ==y x:addr

hoDIFY b

X : INDIRECT g B x:fptr

X:CONTROL guplPe X:EXECUTE D) %

Indirect Executable
Buffer Overflow IVEC

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

X:BUFFER w=SEI)™= . 1NpyT D X : OVERFLOW w=m D x:buff

X:CONTAINS

X:MODIFY X:DIRECT

Direct Data
Buffer Overflow IVEC

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

X:BUFFER w=SEI)™= . 1NpyT D X : OVERFLOW w=m D x:buff

X : CONTAINS g, x:addr

X:INDIRECT

Indirect Data
Buffer Overflow IVEC

SOPHIE ENGLE DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, DAVIS APRIL 13, 2010

