WE HAVE MET THE ENEMY AND HE IS US
<table>
<thead>
<tr>
<th>WHAT WE SAW</th>
<th>Binary, perimeter-based definition of insiders hinder threat analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT WE SHOW</td>
<td>How to define and analyze the insider problem</td>
</tr>
<tr>
<td>WHAT WE DON’T SHOW</td>
<td>How to detect, deter, mitigate, or solve the insider problem</td>
</tr>
<tr>
<td>WHY IT’S IMPORTANT</td>
<td>Identifies highest-risk resources and highest-threat insiders</td>
</tr>
</tbody>
</table>
NAVIGATION

Main Sections:
- Part 1: Unifying Policy Hierarchy
- Part 2: Existing Insider Definitions
- Part 3: Attribute-Based Group Access Control

Supplemental:
- Definitions
PART 1
Understanding Insiders and Insider Threat
CLAIMS

• The complexity of security policy is key to understanding the insider problem.

• Binary or perimeter-based definitions of an insider impede threat analysis.

• The ABGAC model identifies “insiderness” with respect to a resource and allows for insider threat analysis.
SECURITY POLICY

The Complexities
POLICY EXAMPLE

The Scenario:

- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.
POLICY EXAMPLE

The Scenario:
- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The Ideal Policy:
- Yasmin is authorized to read {⋯} records for the purpose of treating {⋯} patients.
- Yasmin is authorized to append {⋯} records for the purpose of treating {⋯} patients.

Feasible?
POLICY EXAMPLE

The Scenario:
- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The Ideal Policy:
- Yasmin is authorized to authenticate as *yasmin*.
- *yasmin* is authorized to read \{\ldots\} records.
- *yasmin* is authorized to append \{\ldots\} records.
The Scenario:

- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The Ideal Policy:

- Yasmin is authorized to authenticate as yasmin.
- yasmin is authorized to read {...} records.
- yasmin is authorized to append {...} records.

Practical?
POLICY EXAMPLE

The Scenario:
- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The **Ideal** **Policy:**
- Yasmin is authorized to authenticate as *yasmin*.
- *yasmin* is authorized to read all records.
- *yasmin* is authorized to write all records.

Possible?
The Scenario:

- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The Ideal Policy:

- Yasmin is authorized to authenticate as `yasmin`.
- `yasmin` is authorized to read all records.
- `yasmin` is authorized to write all records.
- `yasmin` can delete all records.

Exploit!
POLICY EXAMPLE

The Scenario:

- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.

The Different Policies:

- What is ideal?
- What is feasible?
- What is practical?
- What is possible?
SECURITY POLICY
The Unifying Policy Hierarchy
UNIFYING POLICY HIERARCHY

What is the Unifying Policy Hierarchy?

- Introduced by Carlson in 2006:
- A hierarchical model of security policy at different levels of abstraction.

What is it good for?

- Analyzing gaps in the hierarchy lead to insight to where and why problems occur.
EXAMPLE SCENARIO

The Scenario:

- Yasmin, a doctor, is only authorized to read and append medical records of her patients for the purpose of treating them.
EXAMPLE SCENARIO

Oracle Policy (Ideal)

\[
\text{OP}(\text{subject, object, action, environment/intent}) = \\
\{ \text{authorized, unauthorized} \}
\]

\[
\text{OP}(s,o,a,e) = \text{authorized}
\]

- Yasmin, \textit{yasmin}, authenticate, any
- \textit{yasmin}, \{\ldots\} records, read, treating \{\ldots\} patients
- \textit{yasmin}, \{\ldots\} records, append, treating \{\ldots\} patients
EXAMPLE SCENARIO

Feasible Policy \((\text{Feasible})\)

\[
\text{FP}(\text{subject}, \text{object}, \text{action}) = \\
\{ \text{authorized, unauthorized, unknown} \}
\]

- \(\text{FP}(\text{yasmin}, \{\cdots\} \text{records, read}) = \text{authorized}\)
- \(\text{FP}(\text{yasmin}, \{\cdots\} \text{records, append}) = \text{authorized}\)
- \(\text{FP}(\text{Yasmin, yasmin, authenticate}) = \text{unknown}\)
- \(\text{FP}(\text{Xander, yasmin, authenticate}) = \text{unknown}\)
EXAMPLE SCENARIO

Configured Policy \(\approx\) Practical

\[
CP(\text{subject, object, action}) = \begin{cases}
\text{authorized, unauthorized, unknown}
\end{cases}
\]

- \(FP(\text{yasmin, \{\ldots\} records, read}) = \text{authorized}\)
- \(FP(\text{yasmin, \{\ldots\} records, append}) = \text{authorized}\)
- \(CP(\text{yasmin, all records, read}) = \text{authorized}\)
- \(CP(\text{yasmin, all records, write}) = \text{authorized}\)
EXAMPLE SCENARIO

Real-Time Policy \((Possible)\)

\[
\text{RP}(\text{subject, object, action}) = \{ \text{possible, impossible} \}
\]

- \(\text{OP}(Xander, yasmin, authenticate) = unauthorized\)
- \(\text{CP}(yasmin, \text{all records}, delete) = unauthorized\)

- \(\text{RP}(Xander, yasmin, authenticate) = possible\)
- \(\text{RP}(yasmin, \text{all records}, delete) = possible\)
POLICY GAPS

Oracle/Feasible Gap
- Technology Limitations
 Ex: user versus user account, user intent

Feasible/Configured Gap
- Configuration Errors
 Ex: slow removal of terminated employees

Configured/Real-Time Gap
- Implementation Errors and Vulnerabilities
 Ex: buffer overflow, runtime vulnerability
POLICY GAPS

<table>
<thead>
<tr>
<th>Action</th>
<th>OP</th>
<th>FP</th>
<th>CP</th>
<th>RP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xander authenticates as xander.</td>
<td>✓</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>xander accesses a website…</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>…to check the weather</td>
<td>✓</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>…to expose system to exploit</td>
<td>✗</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>Web browser leaks user password</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Yasmin authenticates as xander.</td>
<td>✗</td>
<td>?</td>
<td>?</td>
<td>✓</td>
</tr>
</tbody>
</table>
UNIFYING POLICY HIERARCHY

Understanding Insiders and Insider Threat
DEFINITIONS

Who are the Insiders?
- Anyone with more privileges in a lower level of policy than at a higher level of policy.

What is the Insider Problem?
- Insiders have more permissions than necessary to perform their jobs.
- Insiders must be trusted not to misuse these permissions for other purposes.
PRIMITIVE INSIDER MISUSES

- Violate OP using privileges in CP or FP
 - Ex: Misuse privileges for personal gain.
 - “Legitimate” Access Misuse

- Violate FP using privileges in CP
 - Ex: Fired employee logs on and changes passwords.
 - Assume FP = CP?

- Violate CP using privileges in RP
 - Ex: Exploit buffer overflow inside firewall perimeter to increase privileges.
 - “Illegitimate” Access Misuse
EXAMPLE OF INSIDER MISUSE

Scenario:

Yasmin sells information from all medical records to insurance companies.

- Intent unauthorized in OP
- Intent unrecognized in FP
- Access to all records unauthorized in FP
- Access to all records authorized in CP

Potential for misuse!
INSIDERNESS

Definition:
- A “measure” of an insider’s potential for misuse
- Loosely based on “size of gaps” for an insider

Example:
- Programmer with read and commit access to svn for a specific project
- System administrator for SVN with root access for all company projects
WHAT DO WE LEARN?

There are different categories of insider misuse

- OP/CP Misuse (Legitimate Privilege Misuse)
- CP/RP Misuse (Illegitimate Privilege Misuse)

Insider misuse is not always linked to cyber access

- Some misuse occurs at higher levels of the hierarchy.
- Some misuse is the result of social or physical factors.
- *The Insider Problem predates computers anyway!*
WHAT DO WE LEARN?

Some insiders have higher degree of “insiderness”

- How big are the gaps?
- How much access does the insider have?
- How do we measure or capture “insiderness”?

We need to perform insider threat analysis!
PART 2

Existing Definitions of Insiders
CLAIMS

• The complexity of security policy is key to understanding the insider problem.

• Binary or perimeter-based definitions of an insider impede threat analysis.

• The ABGAC model identifies “insiderness” with respect to a resource and allows for insider threat analysis.
EXISTING DEFINITIONS
Insider:
Anyone operating inside the security perimeter.
(Patzakis, “New Incident Response Best Practices,” 2003.)
Reality is more complex.

http://www.cenic.net/operations/documentation/CENIC-Design.jpg
INSIDER

Someone with access, privileges, or knowledge of information systems and services.

(RAND, “Understanding the Threat,” 2004.)

Binary Classification

- Insider(Name) = { Yes, No }

- Xander, has access and knowledge
- Yasmin, has just knowledge
- Insider(Xander) = Insider(Yasmin) = Yes
INSIDER

Someone with access, privileges, or knowledge of information systems and services.
(RAND, “Understanding the Threat,” 2004.)

What type of access?

- Cyber only?
- Saw how other types of access lead to insider problems in the policy hierarchy
OUR APPROACH
OUR APPROACH

Avoid perimeters
- Define an insider with respect to a resource

Avoid binary classification
- Assign “insiderness” based on level of access

Avoid cyber-only access
- Include physical, cyber, and social access
- Include subjects, objects, actions from Oracle Policy
PART 3
Identifying Insiders and Analyzing Insider Threat
CLAIMS

• The complexity of security policy is key to understanding the insider problem.

• Binary or perimeter-based definitions of an insider impede threat analysis.

• The ABGAC model identifies “insiderness” with respect to a resource and allows for insider threat analysis.
ACCESS CONTROL

Identifying Insiders
USING RBAC

Definition:
- Role-Based Access Control
- Create roles based on job function
- Assign permissions to roles
- Assign roles to users

Usage:
- Identify all roles with access to resource
- Identify all users with those roles
RBAC SCENARIO

<table>
<thead>
<tr>
<th>Name</th>
<th>Job Function</th>
<th>Building Access</th>
<th>Server Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilma</td>
<td>System Admin</td>
<td>Before 5pm</td>
<td>Both</td>
</tr>
<tr>
<td>Xander</td>
<td>Help Desk</td>
<td>After 5pm</td>
<td>Remote</td>
</tr>
<tr>
<td>Yasmin</td>
<td>Janitor</td>
<td>Before 5pm</td>
<td>Physical</td>
</tr>
<tr>
<td>Zane</td>
<td>Janitor</td>
<td>After 5pm</td>
<td>Physical</td>
</tr>
</tbody>
</table>
RBAC SCENARIO

<table>
<thead>
<tr>
<th>Name</th>
<th>Job Function</th>
<th>Attribute</th>
<th>Building Access</th>
<th>Server Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilma</td>
<td>System Admin</td>
<td></td>
<td>Before 5pm</td>
<td>Both</td>
</tr>
<tr>
<td>Xander</td>
<td>Help Desk</td>
<td></td>
<td>After 5pm</td>
<td>Remote</td>
</tr>
<tr>
<td>Yasmin</td>
<td>Janitor</td>
<td></td>
<td>Before 5pm</td>
<td>Physical</td>
</tr>
<tr>
<td>Zane</td>
<td>Janitor</td>
<td></td>
<td>After 5pm</td>
<td>Physical</td>
</tr>
</tbody>
</table>

Insiders With: Remote access to servers.

RBAC Role: System Admin, Help Desk
RBAC Scenario

<table>
<thead>
<tr>
<th>Name</th>
<th>Job Function</th>
<th>Building Access</th>
<th>Server Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilma</td>
<td>System Admin</td>
<td>Before 5pm</td>
<td>Both</td>
</tr>
<tr>
<td>Xander</td>
<td>Help Desk</td>
<td>After 5pm</td>
<td>Remote</td>
</tr>
<tr>
<td>Yasmin</td>
<td>Janitor</td>
<td>Before 5pm</td>
<td>Physical</td>
</tr>
<tr>
<td>Zane</td>
<td>Janitor</td>
<td>After 5pm</td>
<td>Physical</td>
</tr>
</tbody>
</table>

Insiders With: Physical access after 5pm

RBAC Role: Janitor
RBAC SCENARIO

<table>
<thead>
<tr>
<th>Name</th>
<th>Job Function</th>
<th>Attribute 1: Building Access</th>
<th>Attribute 2: Server Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilma</td>
<td>System Admin</td>
<td>Before 5pm</td>
<td>Both</td>
</tr>
<tr>
<td>Xander</td>
<td>Help Desk</td>
<td>After 5pm</td>
<td>Remote</td>
</tr>
<tr>
<td>Yasmin</td>
<td>Janitor</td>
<td>Before 5pm</td>
<td>Physical</td>
</tr>
<tr>
<td>Zane</td>
<td>Janitor</td>
<td>After 5pm</td>
<td>Physical</td>
</tr>
</tbody>
</table>

Insiders With: Physical access before 5pm
RBAC Role: *Unclear*
ABGAC

Attribute-Based Group Access Control
INTRODUCING ABGAC

Attribute-Based Group Access Control

- Generalization of RBAC
- Assigns rights based on general attributes, which may or may not include job function
- Inherits features of RBAC such as:
 - “role containment” as “group containment”
 - “separation of duty” becomes “conflicts of interest”
CONFLICTS OF INTEREST

Scenario:
- Xander, an executive at a company, is married to Yasmin.
- Xander has insider information that company stock will increase.
- There is a conflict of interest if Xander advises Yasmin to invest.

Groups:
- Group 1: Those given the insider information.
- Group 2: Those related to group 1.

Separation:
- Members of group 2 are forbidden to do anything forbidden to members of group 1.
RESOURCE PAIR

Definition:
A pair consisting of a resource (entity) and an access mode describing one way in which that entity can be accessed.

Access mode not restricted to cyber access!

The resource or access may come from any level in the policy hierarchy.
RESOURCE PAIR

Example:

(backups, erase) : ability to erase backup files

Access includes anyone with:

- Privileges to delete files on the server
- Physical access to the hard drive

- Include what is possible (RP) not authorized (CP+)
RESOURCE DOMAIN

Definition:
A set of resource pairs.

(similar to a protection domain, but includes physical, procedural, and cyber access and resource-oriented)

Example:
{ (backups, modify), (backups, erase) }
RD-GROUP

Definition:
A set of (one or more) resource domains.

(can group domains required for multi-stage attacks, or domains with similar risk values)

Example:

\[
\{ \{ \text{(backups, modify)}, \text{(backups, erase)} \}\}, \\
\{ \text{(servers, login)}, \text{(servers, configure)} \}\}
\]
USER GROUP

Definition:

The set of all subjects whose protection domains are a (possibly improper) superset of the associated rd-group.

** Protection domain is used broadly to include possible access from cyber, physical, and social domains.
ABGAC BUILDING BLOCKS

user
group

insider with respect
to a resource

(r, a)

resource pairs

(r, a)

resource domains

rd-group

(r, a)
ANALYZING THREAT

A Simplified Example
ANALYZING THREAT

General Goals:
- Minimize impact of an insider attack
- Minimize number of known insiders

General Approach:
- Provide an ordering of resource domains
- Results in ordering of rd-groups
- Identify user groups for high-value rd-groups
- Users with highest value represent greatest risk
ANALYSIS EXAMPLE

The Scenario
ANALYSIS EXAMPLE

Scenario:
- Multinational company based in the US is developing software for recording real-estate ownership over the Internet

Priorities:
- Preserve integrity and accountability
ANALYSIS EXAMPLE

Environment:

- Developers create and edit software on home systems across the world
- Software is downloaded and uploaded over VPN
- Code resides on servers located in Iowa
- Server backed up daily by corporate office
ANALYSIS EXAMPLE

Resources:

- Developer Workstations (DWS)
- VPN Connection (VPN)
- Server (SVR)
- Backup Files (BAK)

Goal:

- Identify insiders that might insert trap doors
- Identify insiders that could debilitate company
 - Destroy the code and its backups
ANALYSIS EXAMPLE

Worried About:

- Ability to alter code on DWS (directly or indirectly)
- Ability to alter or destroy code on SVR
- Ability to alter or destroy code on BAK
- Ability to alter code in transmission (mitm VPN)

RD-Groups:

- \{ (DWS: login, tamper) \}
- \{ (SVR: write, destroy) \}
- \{ (BAK: write, destroy) \}
- \{ (VPN: configure) \}
ANALYSIS EXAMPLE

Identify User Groups
USER GROUPS: DETAILED

User Group: { (DWS: login, tamper) }

- Developers
- Anyone with physical access to the workstation
 - Developers family
 - Housekeepers
 - Etc.
- Computer repair technicians
- Anyone with remote access to workstation
 - Rogue websites
 - Etc.
USER GROUPS: SIMPLIFIED

Actors:

- Vernon, a developer
- Wilma, Vernon’s nosey wife
- Xander, a system administrator
- Yasmin, president at corporate office
- Zane, janitor at corporate office
PROTECTION DOMAINS

<table>
<thead>
<tr>
<th></th>
<th>DWS</th>
<th>VPN</th>
<th>SVR</th>
<th>BAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log</td>
<td>tamp</td>
<td>config</td>
<td>write</td>
</tr>
<tr>
<td>Vernon (developer)</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Wilma (wife)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Xander (sysadmin)</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Yasmin (president)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Zane (janitor)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>
PROTECTION DOMAINS

<table>
<thead>
<tr>
<th></th>
<th>DWS</th>
<th>VPN</th>
<th>SVR</th>
<th>BAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log</td>
<td>tamp</td>
<td>config</td>
<td>write</td>
</tr>
<tr>
<td>Vernon (developer)</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilma (wife)</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Xander (sysadmin)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Yasmin (president)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Zane (janitor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANALYSIS EXAMPLE

Assign and Evaluate Metrics
VALUE RESOURCES

Assign metrics to rd-groups:

40 \leftarrow \{ (SVR: write, destroy), (BAK: write, destroy) \}
24 \leftarrow \{ (SVR, destroy), (BAK, destroy) \}
16 \leftarrow \{ (SVR, write), (BAK, write) \}
 8 \leftarrow \{ (SVR, write) \}
 2 \leftarrow \{ (DWS, tamper) \}
<table>
<thead>
<tr>
<th></th>
<th>DWS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log</td>
<td>tamp</td>
<td>config</td>
<td>write</td>
<td>dest</td>
</tr>
<tr>
<td>Vernon: 18</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(developer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilma: 18</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(wife)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xander: 44</td>
<td></td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(sysadmin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Yasmin: 20</td>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(president)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Zane: 24</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>(janitor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROTECTION DOMAINS

<table>
<thead>
<tr>
<th></th>
<th>DWS</th>
<th>VPN</th>
<th>SVR</th>
<th>BAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log</td>
<td>tamp</td>
<td>config</td>
<td>write</td>
</tr>
<tr>
<td>Vernon (developer)</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Wilma (wife)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Xander (sysadmin)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Yasmin (president)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Zane (janitor)</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
VALUE ACCESS ATTRIBUTES

Assign metric to attribute groups:

4 ← upper management access
3 ← system administrator access
2 ← developer access
1 ← other staff access
EVALUATE METRICS

Name(user metric, resource metric)

Y(4, 20) → X(3, 44)
X(3, 44) → Z(1, 24)
V(2, 18) → Y(4, 20)
W(2, 18) → Z(1, 24)
W(2, 18) → V(2, 18)
ANALYSIS EXAMPLE

Reality Check
REALITY CHECK

• Simplified Scenario
 ▪ Simplified resources
 ▪ Simplified user groups
 ▪ Simplified metrics

• The Reality
 ▪ Difficult to anticipate avenues of attack
 ▪ Cost functions difficult to create
 ▪ Analysis possible for high-value resources and high-risk insiders?
CLAIMS
A Review
CLAIMS

• The complexity of security policy is key to understanding the insider problem.

• Binary or perimeter-based definitions of an insider impede threat analysis.

• The ABGAC model identifies “insiderness” with respect to a resource and allows for insider threat analysis.
QUESTIONS?
WE HAVE MET THE ENEMY

AND HE IS US
SUPPLEMENTAL
Definitions
INDEX

Attribute-Based Access Control
Configured Policy
Feasible Policy
Illegitimate Access Misuse
Insider
Insider Problem

Insiderness
Legitimate Access Misuse
Oracle Policy
Protection Domain
RD-Group
Real-Time Policy
Resource Domain

Resource Group
Role-Based Access Control
Unifying Policy Hierarchy
User Group
INSIDER

Anyone with more privileges in a lower level of policy than at a higher level of policy.
INSIDER PROBLEM

Insiders have more permissions than necessary to perform their jobs. Insiders must be trusted not to misuse these permissions for other purposes.
INSIDERNESS

A “measure” of an insider’s potential for misuse.
UNIFYING POLICY HIERARCHY

A hierarchical model of security policy at different levels of abstraction, introduced by Adam Carlson in his Master’s Thesis.
ORACLE POLICY

Ideal policy, even if not explicitly defined.

\[\text{OP}(\text{subject}, \text{object}, \text{action}, \text{environment/intent}) = \{ \text{authorized}, \text{unauthorized} \} \]
FEASIBLE POLICY

Attempts to approximate the Oracle Policy while taking into account the limitations of policy technology. Only able to understand system-definable subjects, objects, and actions, and returns unknown for anything outside its domain.

\[\text{FP}(\text{subject, object, action}) = \{ \text{authorized, unauthorized, unknown} \} \]
CONFIGURED POLICY

Policy as configured on the system.

\[\text{CP}(\text{subject}, \text{object}, \text{action}) = \{ \text{authorized, unauthorized, unknown} \} \]
REAL-TIME POLICY

Reflects what is possible on the system.

\[
\text{RP}(\text{subject, object, action}) = \{\text{possible, impossible}\}
\]
LEGITIMATE ACCESS MISUSE

Violating Oracle Policy using access granted in Feasible Policy or Configured Policy.
ILLEGALIMATE ACCESS MISUSE

Violating Configured Policy using access granted in the Real-Time Policy.